## Math 9 Section 1.2 - Square Roots

Homework: Section 1.2 on Pg. 10; 1-2all, 3 Left, 4ab, 6, 7, 8, 10, 12, 13 - Answers on Pg. 361 (Use calculator for questions with decimals)

When we went over the grade 8 exam, I told you that:


In other words, $\qquad$ and $\qquad$
$\qquad$ are opposites! (Like adding/subtracting or multiplying/dividing)
... But why?


$$
\begin{gathered}
\text { Area }=A= \\
\text { Perimeter }=A=
\end{gathered}
$$

For example:


What if we start with the area?


$$
\text { Area }=\mathrm{A}=
$$

In Summary:


AND
\#2.
\#2.

| \#1. $\rightarrow$ \#2. | \#2. $\rightarrow$ \#1. |
| :--- | :--- |
|  |  |
|  |  |

This shows that, $\qquad$ and $\qquad$

Perfect Squares - Any number squared!

| $0^{2}=$ | $\sqrt{\square}=0$ |
| :---: | :---: |
| $1^{2}=$ | $\sqrt{\square}=1$ |
| $2^{2}=$ | $\sqrt{ }=2$ |
| $3^{2}=$ | $\sqrt{ }=3$ |
| $4^{2}=$ | $\sqrt{\square}=4$ |
| $5^{2}=$ | $\sqrt{ }=5$ |
| $6^{2}=$ | $\sqrt{ }=6$ |
| $7^{2}=$ | $\sqrt{ }=7$ |
| $8^{2}=$ | $\sqrt{ }=8$ |
| $9^{2}=$ | $\sqrt{\square}=9$ |
| $10^{2}=$ | $\sqrt{\square}=10$ |

Let's try some problems with roots...
$\sqrt{\frac{49}{121}}$
$-\sqrt{100}$
$\sqrt{0.81}$

What happens if we take the square root of a number that isn't a perfect square?
$\sqrt{12}$
$\sqrt{78}$
$-\sqrt{97}$

