Homework: Section 1.4 on Pg. 23; 1all, 2left, 3all, 5-10left, 11all, 13 - Answers on Pg. 362 iplied. Sase J Power **Exponential Form:** The <u>base</u> tells us what number is being multiplied. The <u>exponent</u> or <u>rower</u> tells us how many times we multiply that number by itself. Write in exponential form, then evaluate 2x2x2=(23= 8 7×7×7×7×7= 75= 16807 Write in repeated factor form a = axa x axa / Multiply 40=4×4×4×4×4×4×4×4 = 4096 NOTE: be careful with powers when negatives and brackets are involved. For example: (-2)4= +2 x+2x+2x+2 = -2x2x2x2 -1-2)4= - (+2x+2x+2x+2x+2) = -(16) = -16In general, if a is positive (a > 0), then: (-a) will be ____ (-a)^{odd} will be AND

$$(-a)^{\text{ess}} \text{ will be}$$

$$(+a \times +a) \times (+a \times +a)$$

$$(+a \times +a) \times (+a \times +a) \times (-a)$$

To complete 1.4 in the workbook, you will need to know two rules that we will prove later...

$$7^{1} = 7$$
 (-7)¹ = -7 $7^{0} = 7$

For example:

What happens when we make exponents bigger? $2^2 = 4$ $2^3 = 8$ $2^4 = 16$ $2^1 = 2$

$$2^{1} = \frac{1}{2} = \frac{1}{2$$

$$= 0.25 = 0.125 = \frac{1}{6} = 6.062$$

$$\left(\frac{3}{2}\right)^{1} = \frac{3}{2} = 1.5 \left(\frac{3}{2}\right)^{2} = \frac{3}{2} \times \frac{3}{2} = \frac{9}{4} \left(\frac{3}{2}\right)^{3} = \frac{3^{3}}{2^{3}} = \frac{27}{8} \left(\frac{3}{2}\right)^{4} = \frac{3^{4}}{2^{4}} = \frac{81}{16}$$

 $1^2 = |x| = |$

$$2.25^{\circ}$$
 $2.73 = \frac{9}{4}$

$$= \frac{1}{2} \times \frac{1}{2} = \frac{1}{4} \quad \left(\frac{1}{2}\right)^3 = \frac{1}{2^3} = \frac{1}{8} \quad \left(\frac{1}{2}\right)^4 = \frac{1}{2} \times \frac{1}{2}$$

$$\frac{34}{24} = \frac{8}{16}$$

$$\frac{3^4}{2^4} = \frac{81}{16}$$

$$(\frac{1}{2}) = \frac{3}{24} = \frac{3}{16}$$

$$= 5.062$$

$$= 2.25 = 3.375 = 5.0625$$

$$|x| = | 13 = | 14 = | .$$

When the base is <u>Smaller Hun</u>, bigger powers give us smaller answers

When the base is <u>equal</u> to <u>bigger</u> bigger powers give us the same answers

Use () For = to complete a true statement

 $(4)^{3} \leq (4)^{5} \qquad \left(\frac{3}{5}\right)^{3} \geq \left(\frac{3}{5}\right)^{4}$ |A| = |A| = |A| |A| |A| = |A| |A

 $(-5)^3 < (-5)^2$ $(-2)^6 > -(2)^5$

$$(\frac{1}{2})^{\circ} = (-\frac{8}{2})^{\circ}$$

Be careful with negatives! Remember, a negative number is always <u>Muller</u> than a positive number.

11 =

What did we notice?