b) $-\sqrt{\frac{81}{100}} = -\sqrt{\frac{81}{100}} = -$

 $d)\sqrt{8^2}-\sqrt{12^2} = 8 - 12$

Full credit will only be awarded for all work shown in a neat and organized manner.

Write down a number that is an integer but

not a whole number. Explain your answer.

0,1,2,3...

Rational, Real

Evaluate each square root. Write your answer as a <u>fraction or integer</u>.

None

4. EXPLAIN why the number 361 is a Perfect Square.

(If the answer does not exist, write the answer as Ø)

= J-9 = X

= 6 = 136

e) $(\sqrt{4} + \sqrt{16})^2 = (2 + 4)^2$

a) $\sqrt{\frac{4}{121}} = \sqrt{\frac{2}{121}} = \sqrt{\frac{2}{11}}$

c) $\sqrt{4^2-5^2} = \sqrt{(6-25)^2}$

whole 3

irrational, real).

b) -73.895

c) √-5

a) 0

For each number, write down ALL number categories that it belongs to (natural, whole, integers, rational,

whole Integer Rational, Real

Natural, whole, Integer, Rational,

Any whole number squared is a perfect square

Since 361 = 192 it is a perfect Square

Any @ integer (-1,-2,-3,...) Any In # (II, 53, 0.52743...)

6. Find a whole number whose square root is between 12 and 13. (Explain your reasoning)

$$\sqrt{144} = 12$$
 square root of any number from
=> 145-168 works
 $\sqrt{169} = 13$ ($\sqrt{150} = 12.247...$)

7. Solve for the length of the missing side. Answer exactly with a square root, then to one decimal place.

8. Taylor is leaning a 12.3m ladder against a wall. If the bottom of the ladder is 4.7m from the bottom of the wall, how high is the top of the ladder above the ground? (<u>HINT</u>: Draw a picture!)
[Answer to one decimal place]

$$b^{2} = c^{2} - a^{2}$$

$$b^{2} = 12.3^{2} - 4.7^{2}$$

$$b^{2} = 151.29 - 22.09$$

$$b^{2} = 129.2$$

$$b = \sqrt{129.2} = \sqrt{11.4m}$$