Math 9 Section 1.6 - Exponent Rules Part 1

Homework: Section 1.6 on Pg. 34; 1-3all,4-9left - Answers on Pg. 364

Write the following in repeated factor form, then as a single exponential. What do you notice?

$$\frac{2^5 \times 2^3}{\sqrt{7}} = \frac{(2 \times 2 \times 2 \times 2 \times 2) \times (2 \times 2 \times 2)}{5 \times 2^3} = \frac{2^5 \times 2^3}{5 \times 2^3} = \frac{2^5 \times 2^5}{5 \times 2^5} = \frac{2^5}{5 \times 2^5} = \frac{2^5}{5 \times 2^5} = \frac{2^5}{5 \times 2^5} = \frac{2^5}{5 \times 2^5} = \frac{2^5}{$$

Product Rule:

$$Q^{N} \times Q^{M} = Q^{N+M}$$

When we multiply two exponentials with the same <u>base</u> we can <u>a dd</u> the exponents and keep the <u>base</u> the same.

For example, write the following as a single exponential:

$$5^{2} \times 5^{9} = 5^{2+9}$$

$$= 5^{11}$$

$$= (-4)^{6} \times (-4)^{7} = (-4)^{6}$$

$$= (-4)^{6} \times (-4)^{7} = (-4)^{6}$$

$$= (-4)^{6} \times (-4)^{7} = (-4)^{6}$$

$$(-4)^{6} \times (-4)^{7} = (-4)^{6+7} \text{ odd}$$

$$= (-4)^{13} \text{ odd}$$

Write the following in repeated factor form, then as a single exponential. What do you notice?

Ouotient Rule:

$$\frac{a^n}{a^m} = a^n : a^m = a^{n-m}$$

When we divide two exponentials with the same <u>base</u> we can <u>subtract</u> the exponents and keep the <u>base</u> the same.

For example, write the following as a single exponential:

$$5^9 \div 5^2 = 59 - 2 \qquad (-4)^7 \div (-4)^6 = (-4)$$

$$= 57$$

$$= -4$$
Proof for why $a^0 = 1$ and $a^1 = a$:

Proof for why
$$a^0 = 1$$
 and $a^1 = a$:

When Rule:

 $3^4 = 3^{4-4} = 3^0 = 1$

81
$$a^{4} = 0^{4-4} = 0^{3}$$

$$3^{\circ} = 1$$

$$we could do this
for any base
$$\alpha = 1$$$$

