Math 9 Section 5.3 - Multiplying Polynomials

Homework: Section 5.3 on Pg. 181; \#1-3half, 4-5all, 6a, 7-10half
Recall our algebra tiles and how we figured out the value of each tile:

> Positive x $+x$
Positive x^{2}
$+x^{2}$

When we calculate the area of a rectangle, we multiply the sides together.
If we want to find the answer for two numbers multiplied together, that's the same as finding the area of a rectangle with the length equal to the first number and width equal to the second number.

Area $=$ 8

This idea also works for polynomials, and we can use the algebra tiles to "measure out" the sides of the rectangle.

$\mathbf{2 x}$ multiplied by $3 x$

Side \#1
-2 multiplied by $3 x$

$-2 x$ multiplied by $2 x-1$

From our algebra tile pictures, we can see the pattern for multiplying polynomials:

1. \qquad
2. \qquad
3. \qquad
\qquad
$\left(-3 x^{2}\right)(-7 x)=$

$$
\left(-4 x^{2} y\right)\left(x^{4} y^{7}\right)=
$$

$(-2 x)\left(3 x^{2}-5\right)=$
$(3 x+2 y)(x y)=$
$\left(2 x^{2}-x+4\right)\left(-3 x^{2}\right)=$

