

Pattern

Pattern			
2000	00	0	

Start Step 1 Step 2 Step 3

1. Table of Values and Ordered Pairs

Step number (n)	Number of squares (t)	Ordered Pairs (n, t)	
0	1	(0,1)	
1	4	-(1,4)	
2	7	(2,7)	
3	10	-(3,10)	

1. Table of Values and Ordered Pairs

Step number (n)	Number of circles (t)	Ordered Pairs (n, t)
0	7	(0,7)
1	5	(1,5)
2	3	(2,3)
3	L	(3,1)

2. Graph

3. Equation

$$t = 1 + 3n$$

Check: $t = 1 + 3n$
 $t = 1 + 3(3) = 1 + 9 = 10$

3. Equation

$$7-2n = t$$

Check: $5+ep2 = 3$
 $t=7-2(z)=7-4=3$

y= 3(-2)-1=-6-1

Remember: For a linear pattern, there are two important features:

When we talk about equations of lines (especially when we use x and y) we use different names for the same two things:

y-intercept: where the line touches the y-axis (x=0) which is the same as: Start (Step 0)

slope: how Much it increases/ Lecreases when we Move 1 to the right

The linear equation: y = 3x - 1 has a y-intercept = ____ and a slope = _____

The linear equation: $y = \frac{1}{2}x + \frac{4}{3}$ has a y-intercept = $\frac{4/3}{2}$ and a slope = $\frac{1}{2}$

The linear equation: y/(1/x) - 2has a y-intercept = ____ and a slope = ____

The linear equation: y = -x + 0 has a y-intercept = 0 and a slope = -1

Example #1: Graph the linear equation y = -2x + 3

(In this example, the y-intercept = $\frac{3}{2}$ and the slope = $\frac{-2}{2}$)

Step 1: Create a table of values and ordered pairs that match with the equation

Step 2: Plot the points on a graph and join them as a line, with arrows on both ends

(Note: You can choose ANY values for x, then use those values to calculate y)

1. Table of Values and Ordered Pairs

Choose 5 different x values

Calculate the v values that match.

Write the ordered pairs!

$$y = -2(-2) + 3 = 7$$

$$y = -2(-1) + 3 = 5$$

$$y = -2(-1) + 3 = 5$$

$$y = -2(-1) + 3 = 5$$

$$y = -2(-1) + 3 = 1$$

Graph

Plot the points and join them as a line. Draw arrows on both ends to show it continues in both directions forever

Example #2: 3y - x + 9 = 0

(In this example, we need to convert into y=mx+b form first!)

(The y-intercept = 3 and the slope =

Find 5 ordered pairs that match with the equation, then draw the graph

(It makes life easier if we pick multiples of 3 so that we don't have to graph fractions)

Example #3: In January, the temperature (T) outside Lord Byng is given by the equa	ation
T = 2h - 5 where h is the number of hours after school starts.	

on the x-axis and In this example, we should put on the y-axis.

The y-intercept = ____ and the slope =

a) Find the temperature outside Byng zero, two and four hours after school starts.

T = 2(0) - 5 = -5 (0,T = 2(2) - 5 = 4 - 5 = -1 (2, -1) T = 2(4) - 5 = 8 - 5 = 3 (4, 3)

b) Graph the equation

c) Using the graph, estimate the temperature outside Byng 5 1/2 hours after school starts.

h=5.5 T=6 check T=24-5 T= 2(5.5)-5=11-5=6 V d) Using the graph, estimate how many hours after school starts is the temperature 0 degrees.

n=2.5

T= 2(2.5)-5=5-5=0