
Graphs of Linear Equations

All 3 methods represent the SAME PATTERN!

In Section 4.1, we used a table of values to get the graph and the equation for a pattern. Let's do one more example with x and y now.

Remember: For a linear pattern, there are two important features:

- 1. Common difference
- Start (Step 0)

When we talk about equations of lines (especially when we use x and y) we use different names for the same two things:

y-intercept: where it touches y-axis (x=0)

which is the same as: Start (Step 0)

which is the same as: Common difference 1 to the right each step

The linear equation: q = 3k - 1 has a y-intercept = ____ and a slope =

The linear equation: $y = \frac{1}{2}x + \frac{4}{3}$ has a y-intercept = $\frac{4/3}{3}$ and a slope = $\frac{1}{2}$

has a y-intercept = -2 and a slope = The linear equation: y = |x| - 2

The linear equation: y = -x + 0 has a y-intercept = 0 and a slope = -1

(In this example, the y-intercept = $\frac{3}{2}$ and the slope = $\frac{-2}{2}$)

Step 1: Create a table of values and ordered pairs that match with the equation

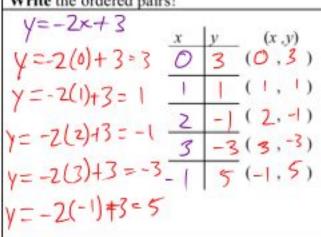
Step 2: Plot the points on a graph and join them as a line, with arrows on both ends

(Note: You can choose ANY values for x, then use those values to calculate v)

Table of Values and Ordered Pairs

Choose 5 different x values

Calculate the v values that match.


Write the ordered pairs!

Plot the points and join them as a line.

Draw arrows on both ends to show it

continues in both directions forever

Example #2: 3y - x + 9 = 0

y-int (In this example, we need to convert into y=mx+n form first!)

(The y-intercept = -3and the slope = 1/3

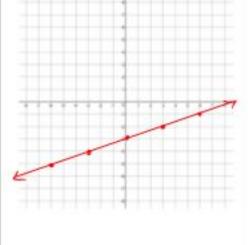
Find 5 ordered pairs that match with the equation, then draw the graph

Convert into y=mx+b form:

$$3y - x + 9 = 0
+x - 9 | y = \frac{0}{3} - 3 = -3 (0, -3)$$

$$15 \text{ late for } y | y = \frac{3}{3} - 3 = 1 - 3 (3, -2)$$

$$15 \text{ late for } y | y = \frac{3}{3} - 3 = 1 - 3 (6, -1)$$


$$15 \text{ late for } y | y = \frac{3}{3} - 3 = 1 - 3 (6, -1)$$

$$17 = \frac{4}{3} - 3 = 2 - 3 (-6, -5)$$

$$17 = \frac{4}{3} - 3 = -2 - 3 = -4$$

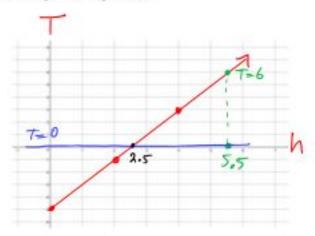
$$17 = \frac{-6}{3} - 3 = -2 - 3 = -2$$

$$17 = \frac{-6}{3} - 3 = -2 - 3 = -2$$

(It makes life easier if we pick multiples of 3 so that we don't have to graph fractions)

0.5 r

Example #3: In January, the temperature (T) outside Lord Byng is given by the equation
T = 2h - 5 where h is the number of hours after school starts.


In this example, we should put on the x-axis and on the y-axis.

The y-intercept = -5 and the slope = 2

a) Find the temperature outside Byng zero, two and four hours after school starts.

$$T = 2(0) - 5 = -5 (0, -5)$$

b) Graph the equation

 c) Using the graph, estimate the temperature outside Byng 5 ½ hours after school starts.

d) Using the graph, estimate how many hours after school starts is the temperature 0 degrees.

T=0 h=2.5 t=2h-5t=2(25)-5=5-5=0

Homework: Section 4.2 # 4-5all, 6all, 7left, 8 (a-f), 10, 12, 13