Interpreting Linear Graphs

Mr. G is keeping track of how many flowers bloom in his garden. His data is below, with number of flowers (F) and the number of weeks (w). He wants to find an equation so he can predict how many flowers he will have!

	\square						
							7
$\begin{aligned} & -65 \\ & -60 \\ & -55 \end{aligned}$							
$\begin{aligned} & -55 \\ & -50 \end{aligned}$							
$\underline{\underline{L}}^{40}$							
				\square			
$\begin{array}{ll} \frac{\pi}{ज} & 35 \\ \frac{1}{\omega} & 30 \\ 3 & 25 \\ 0 & \end{array}$							
			,				
$\pm \quad 20$		\square					
$\begin{array}{r} 10 \\ -5 \end{array}$							
0			-	3	4		6
			eeks	(W)			

a) Find an equation for the number of flowers (F) related to the number of weeks (w).

Using the graph, we need to find:
Slope $=$ \qquad y-intercept $=$ \qquad
Write the equation:
b) Check your equation (choose a point on the graph (,)
c) Predict the number of flowers after 12 weeks

Write the equation:

Check your equation: (,)

Write the equation:

Check your equation: (,)

A: Write the equation

A: Check the equation (,)

B: Write the equation

B: Check the equation (,)

We call these 2 lines \qquad , which means they have the same \qquad but different
\qquad .

Slope $=$ \qquad \mathbf{y}-intercept $=$ \qquad Write the equation:

Flat lines are called \qquad lines. They have the same \qquad value everywhere!

All \qquad lines have a slope of \qquad .

Straight up and down lines are called \qquad lines. They have the same \qquad value everywhere!

All \qquad lines do not have a \qquad or a \qquad .

Homework: 4.2 \#9 (abcde)
4.3 \#1 (all), 2(right) 3 (all), 4-5 (right)

