Graphs of Linear Equations

In Section 4.1, we used a table of values to get the graph and the equation for a pattern. Let's do one more example with x and y now.

Remember: For a linear pattern, there are two important features:

1. \qquad
2. \qquad
When we talk about equations of lines (especially when we use x and y) we use different names for the same two things:
\boldsymbol{y}-intercept: \qquad
which is the same as: \qquad
slope:
which is the same as: \qquad

The linear equation: $y=3 x-1 \quad$ has a y-intercept $=$ \qquad and a slope $=$ \qquad
The linear equation: $y=\frac{1}{2} x+\frac{4}{3}$ has a y-intercept $=$ \qquad and a slope $=$ \qquad
The linear equation: $y=x-2$ has a y-intercept $=$ \qquad and a slope $=$ \qquad
The linear equation: $y=-x$ has a y-intercept $=$ \qquad and a slope $=$ \qquad

Example \#1: Graph the linear equation $y=-2 x+3$
(In this example, the y -intercept $=$ \qquad and the slope $=$ \qquad
Step 1: Create a table of values and ordered pairs that match with the equation
Step 2: Plot the points on a graph and join them as a line, with arrows on both ends
(Note: You can choose ANY values for x, then use those values to calculate y)

1. Table of Values and Ordered Pairs Choose 5 different x values Calculate the y values that match. Write the ordered pairs!	2. Graph Plot the points and join them as a line. Draw arrows on both ends to show it continues in both directions forever

Example \#2: $3 y-x+9=0$
(In this example, we need to convert into $\mathrm{y}=\mathrm{mx}+\mathrm{b}$ form first!)
(The y -intercept $=$ \qquad and the slope $=$ \qquad)
Find 5 ordered pairs that match with the equation, then draw the graph

Convert into $\mathrm{y}=\mathrm{mx}+\mathrm{b}$ form:	
	(x, y)
	(,)
	(,)
	(,)
	(,)
	(,)

(It makes life easier if we pick multiples of 3 so that we don't have to graph fractions)

Example \#3: In January, the temperature (T) outside Lord Byng is given by the equation $T=2 h-5$ where h is the number of hours after school starts.

In this example, we should put \qquad on the x-axis and \qquad on the y-axis. The y -intercept $=$ \qquad and the slope $=$ \qquad
a) Find the temperature outside Byng zero, two and four hours after school starts.
b) Graph the equation

c) Using the graph, estimate the temperature outside Byng $5 \frac{1}{2}$ hours after school starts.
d) Using the graph, estimate how many hours after school starts is the temperature 0 degrees.

Homework: Section 4.2 \# 4-5all, 6all, 7left, 8 (a-f), 10, 12, 13

