Math 9 Section 1.6 - Exponent Rules Part 1

Homework: Section 1.6 on Pg. 34; 1-3all,4-9left - Answers on Pg. 364
Write the following in repeated factor form, then as a single exponential. What do you notice?

$$
2^{5} \times 2^{3}=
$$

\qquad $=$ \qquad

Product Rule:

When we multiply two exponentials with the same \qquad we can \qquad the exponents and keep the \qquad the same.

For example, write the following as a single exponential:
$5^{2} \times 5^{9}=$
$(-4)^{6} \times(-4)^{7}=$
$6^{2} \times 6^{4} \times(-6)^{7}=$

Write the following in repeated factor form, then as a single exponential. What do you notice?

$$
\frac{2^{5}}{2^{3}}=
$$

Quotient Rule:

When we divide two exponentials with the same \qquad we can \qquad the exponents and keep the \qquad the same.

For example, write the following as a single exponential:

$$
5^{9} \div 5^{2}=
$$

$$
(-4)^{7} \div(-4)^{6}=
$$

$$
\frac{(-6)^{9}}{6^{4} \times(-6)^{3}}=
$$

$\underline{\text { Proof for why } a^{0}=1 \text { and } a^{1}=a: ~}$

What happens if the bases are different?

Simplify:

$$
\frac{(-4)^{8} \times 3^{6}}{4^{4} \times(-3)^{3}}=
$$

