## Foundations 12: Probability Practice Test $P(A \cup B)=P(A)+P(B)-P(A \cap B)$

$$
P(A \cap B)=P(A) \cdot P(B \mid A)
$$

Full credit will only be awarded for all work shown in a neat and organized manner. For probabilities, answer with percentages to 2 decimal places, if needed (e.g. 14.56\%)

1. A student at Lord Byng that takes the bus to school misses their bus $28 \%$ of the time. If they miss the bus, the next day they are $10 \%$ less likely to miss the bus (because they get ready a bit faster). If they catch the bus, the next day they are $5 \%$ less likely to catch the bus (because they get complacent).
a) Draw a fully labelled tree diagram to represent what happens for two days of taking the bus to school.
b) $P($ Catch both buses $)=$ $\qquad$
c) $P($ Miss one bus $)=$ $\qquad$
d) $P($ Miss at least one bus $)=$ $\qquad$
e) $P\left(\right.$ Make $2^{\text {nd }}$ bus $\mid$ missed $1^{\text {st }}$ bus $)=$ $\qquad$
2. The following is a partial list of odds for each school winning the 2020 Vancouver Math Challengers Competition

Lord Byng 1:4
Churchill 4:5
Prince of Wales 2:13
a) What is the probability of each team winning?
b) If Tupper has an $8 \%$ chance of winning, what are the odds against them winning, in lowest terms?
3. In a group of 30 teachers at a staff meeting, 20 teach math and 14 of those math teachers snowboard (the rest ski). The rest of the teachers teach English and 3 of those teachers ski.
(Leave answers $a$. to $d$. as fractions. You don't need to reduce them)

|  | Math (M) | English (E) | Total |
| :--- | :---: | :---: | :---: |
| Snowboard (Snow) |  |  |  |
| Ski (Ski) |  |  |  |
| Total |  |  | 30 |

a. $P(S k i \cap E)=$
b. $P($ Snow $\cup M)=$
c. $P\left(\right.$ Ski $\left.\mid E^{\prime}\right)=$
d. $P\left(\mathrm{M}^{\prime} \cap \mathrm{Ski}{ }^{\prime}\right)=$
e. In this group, are teaching English and
f. in this group, are teaching English and snowboarding independent? Explain. snowboarding mutually exclusive? Explain
4. A survey done at Lord Byng during a donut sale had the following results
a) Draw a Venn Diagram to represent the data.

75\% liked Jelly-Filled donuts 48\% liked Boston Cream donuts $15 \%$ liked neither
b) What is the probability that a randomly selected person liked both?
d) Based on the data given, is liking Jelly-Filled and Boston Cream independent? Mathematically justify your answer.
c) What is the probability that a randomly selected person liked Jelly-Filled but not Boston Cream?
e) Given that a randomly selected person liked Boston Cream, what is the probability they also like Jelly-Filled?

