Foundations 12 – Mutually Exclusive Events

Homework: Lesson #3 on Pg. 123: #1-12

Warm-up

I polled the students in our class and got the following results. 53% of people said they liked cats, 69% said they liked dogs and 35% said they liked cats and dogs. Draw a Venn Diagram to figure out the probability that a person chosen at random:

- i. likes just cats ii. likes just dogs
- iii. doesn't like cats or dogs

ii. likes just dogsiv. likes cats or dogs

i.		ii	
iii.		iv	

<u>Ex 1</u>

A six-sided die is rolled. Let's call Event A "An even number is rolled" and Event B "An odd number is rolled"

- a) List all the possible outcomes for:
 - i. Event A ii. Event B
 - iii. Event A or B (written Event A U B) iv. Event A and B (written Event A \cap B)
- b) Draw a Venn Diagram for the Sample Space and indicate where each event would go

c)	Calcula i.	ate the following probabilities P(A) =	ii.	P(B) =			
	iii.	P(A U B) =	iv.	Р(А ∩ В) =			
Since	P(A ∩ I	B) =, we call Event A and Event B		·			
Anoth	er way	to see this: Since Event A and Event B do <u>not</u> o	overlap	in the Venn Diagram, we			
call th	e even	ts					
		e is rolled. Let's call Event A "An even number is rol the possible outcomes for:	led" and	d Event B "A multiple of 3 is rolled"			
-	ii.	Event A	ii.	Event B			
	iii.	Event A or B (written Event A U B)	iv.	Event A and B (written Event A \cap B)			
e) Draw a Venn Diagram for the Sample Space and indicate where each event would go							
f)	Calcula ii.	ate the following probabilities P(A) =	ii.	P(B) =			
	iii.	P(A U B) =	iv.	P(A ∩ B) =			
Since	P(A ∩ I	B) ≠, Event A and Event B are <u>not</u>					

Another way to see this: Since Event A and Event B do overlap in the Venn Diagram, we know

the events are <u>not</u> ______.

The ways to check if two events are mutually exclusive:

1. Think about the probability: $P(A \cap B)$. Is it possible for Event A and Event B to happen at

the same time? If yes, then they are	
--------------------------------------	--

2. If they don't overlap in a Venn Diagram, then they are

- **Ex 3** Are the following events mutually exclusive?
 - a) You draw a card from a standard deck Event A - A face card is selected Event B – A club is selected
 - b) You roll two 6-sided dice Event A – Both dice show the same number

Ex 4

For each experiment below, think of two events that are **mutually exclusive** and two events that are **NOT mutually exclusive**.

- a) Drawing a card from a standard deck
- Two mutually exclusive events i.

ii. Two Not mutually exclusive events

b) Rolling a 20 sided die (D20)

Two mutually exclusive events ii.

ii. Two Not mutually exclusive events

Event B – The dice add to 9

There is a formula we can use that calculates P(A U B): Let's look back at the warm-up

P (A U B) =

Let's check that the formula works for <u>Warm-up</u>, <u>Ex 1</u>, and <u>Ex 2</u> from before:

Check Warm-up

Check <u>Ex 1</u>

Check <u>Ex 2</u>