Warm-up

I polled the students in our class and got the following results. 53% of people said they liked cats, 69% said they liked dogs and 35% said they liked cats and dogs. Draw a Venn Diagram to figure out the probability that a person chosen at random:

- likes just cats
 - doesn't like cats or dogs iii.
- ii. likes just dogs

iv. likes cats or dogs (9+ least one)

iii.

iv. 100-17 = 87%

Ex 1

A six-sided die is rolled. Let's call Event A "An even number is rolled" and Event B "An odd number is rolled"

List all the possible outcomes for:

Event A

{2, 4, 6

Event A or B (written Event A U B) iii.

[1,2,3,4,5,6]

ii. Event B

ίv. Event A and B (written Event A \cap B)

b) Draw a Venn Diagram for the Sample Space and indicate where each event would go

c) Calculate the following probabilities
i.
$$P(A) = \frac{3 \text{ faw vab (e}}{6 \text{ total}} = \frac{1}{2} = 50\%$$
ii. $P(B) = \frac{3 \text{ fav.}}{6 \text{ tot}} = \frac{1}{2} = 50\%$

iii.
$$P(A \cup B) = \frac{6 \text{ fav.}}{6 \text{ tot}} = 1 = 100\%$$
 iv. $P(A \cap B) = \frac{0 \text{ fav.}}{6 \text{ tot}} = 0\%$

Since
$$P(A \cap B) = 0$$
, we call Event A and Event B Mutually exclusive.

Another way to see this: Since Event A and Event B do not overlap in the Venn Diagram, we call the events Mutually exclusive.

Ex 2

A six-sided die is rolled. Let's call Event A "An even number is rolled" and Event B "A multiple of 3 is rolled" d) List all the possible outcomes for:

Event B

$$\{2, 4, 6\}$$
Event A or B (written Event A U B)
iv. Event A and B (written Event A \cap B)

e) Draw a Venn Diagram for the Sample Space and indicate where each event would go

calculate the following probabilities

ii.
$$P(A) = \frac{3 + 4v}{6 + 6t} = \frac{1}{2} = 50\%$$

iii. $P(B) = \frac{2 + 4v}{6 + 6t} = \frac{1}{3} = 33.3\%$

iii.
$$P(A \cup B) = \frac{4fav}{6tot} = \frac{2}{3} = 66.7\%$$
 iv. $P(A \cap B) = \frac{1}{6tot} = \frac{1}{6} = 16.7\%$

Since P(A∩B) ≠ D Event A and Event B are not Mutually exclusive

Another way to see this: Since Event A and Event \$ do overlap in the Venn Diagram, we know the events are not Mytvally CXC/USIVE.

The ways to check if two events are mutually exclusive:	
1. Think about the probability: P(A \cap B). Is it possible for Event A and Event B to happen at	
the same time? If yes, then they are NOT MUTUALLY EXCLUSIVE	
2. If they don't overlap in a Venn Diagram, then the	,
Ex 3 Are the following events mutually exclusive?	
 a) You draw a card from a standard deck 	
Event A - A face card is selected	Event B – A club is selected
1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	happen at same time!
1 1 1 1 N N N N N N N N N N N N N N N N	OT) mutually exclusive
b) You roll two 6-sided dice	
Event A – Both dice show the same number	Event B – The dice add to 9
1,1=2 5,5=16 Can to	hey happen at the same true?
22 4	
$\frac{7,2}{3,3} = \frac{4}{6}$ 6,6 = 12 NO =	Mutually exclusive
Ex4 4,4= 8	
For each experiment below, think of two events that ar	e mutually exclusive and two events
that are NOT mutually exclusive.	can both
 a) Drawing a card from a standard deck 	L huppen at same
i. Two mutually exclusive events	ii. Two Not mutually exclusive events the
can't face (5, Q, u) 12ed	three Red
both C/1	
happen ACE (10b)	Red heart
atsino	•
time	
b) Rolling a 20 sided die (D20)	
ii. Two mutually exclusive events (0,20)	ii. Two Not mutually exclusive events
OVALA I MULT IN	20 1 611
ii. Two mutually exclusive events $e^{(9,26)}$ even $ MU/+ 10 e^{-7,14}$ one $ MU/+ 7 e^{-7,14}$	20 6dd
7.14	
one mult 7 = "	even mult
0,,	3,30
'	

There is a formula we can use that calculates P(A U B): Let's look back at the warm-up

Let's check that the formula works for Warm-up, Ex 1, and Ex 2 from before:

Check Ex1
$$P(even \ v \ odd) = P(even) + P(odd) - P(even \ n \ odd)$$

$$= \frac{1}{2} + \frac{1}{2} - O \leftarrow \text{mutually exclusive}$$

Check Ex2 =
$$1 = [100\%]$$

 $P(even \cup mult, 3) = P(even) + P(mult 3) - P(even \land mult 3)$

 $=\frac{1}{2}+\frac{1}{3}-\frac{1}{6}=0.666...$